В основу алгоритмов приближенных вычислений ВХ положен принцип расчета ВХ по функциям распределения выходных и промежуточных величин. При этом законы их распределения вычисляются как распределения функции от случайных аргументов[ЕУ].
Задача функционального преобразования непрерывных случайных величин формируется следующим образом.
Дано: совместная плотность распределения вероятностей wn(x1,...,xn) непрерывных случайных величин e1,...,en
и совокупность функций f1,...,fm от n переменных. С помощью этих функций определены m случайных величин h1=f1(x1,...,xn),...,hm=fm(x1,...,xn), где xi – значения случайных величин ei.
Необходимо: определить закон распределения каждой полученной случайной величины hj и их совместную плотность Wm(y1,...,ym), где yi - значения случайных величин hj.
Решение этой задачи точными методами [КК] даже для одномерного случая возможно только при жестких ограничениях на вид функции и закон распределения аргумента. Например, применение метода обратной функции требует вычисления на каждом участке монотонности f(x) обратной функции и производной от обратной функции.
Вычисление W(y) методом характеристической функции [КК] ограничено таким набором w(x) и f(x), для которых можно вычислить характеристическую функцию в явном виде, а по характеристической функции вычислить W(y).
В связи с этим целесообразно воспользоваться приближенным методом, сущность которого заключается в вычислении некоторых характеристик закона распределения и по ним восстановлении всего закона распределения. В качестве таких характеристик можно взять начальные моменты закона распределения:
mk(h)=
или для одномерного случая h=f(x)
mk(h)=
при условии, что этот интеграл сходится абсолютно [КК].
Поскольку данный методический подход возможен практически для любых вычислительных алгоритмов, то для иллюстрации его реализуемости можно ограничиться классом функций, представимых конечным степенным рядом.