Теория и практика защиты программ



         

Применение вычислительных методов к задачам гидролокации - часть 2


при относительно простой аппаратной реализации. Скорость адаптации уменьшается при большом разбросе собственных значений ковариационной матрицы данных, что имеет место при сильных источниках помех. Это может привести к времени сходимости, значительно превышающему период, в течение которого процессы, воздействующие на систему подавления, можно считать стационарными. В этом случае более быстрая сходимость может быть получена непосредственным обращением ковариационной матрицы выборок и решением нормальных уравнений, что приведет к более эффективному (в статистическом смысле) использованию имеющихся данных.

Современные методы спектрального анализа обеспечивают повышенную разрешающую способность при использовании параметрической модели сигнала. В методе максимума энтропии сигнал моделируется как выходной сигнал фильтра, имеющего только полюсы, на вход которого подан белый шум. Обратным такому фильтру служит трансверсальный фильтр, преобразующий сигнал в белый шум, весовые коэффициенты которого рассчитываются путем решения задачи линейного прогноза сигнала на один шаг вперед. Известно, что для стационарного процесса ошибка прогноза по методу наименьших квадратов представляет собой белый шум. Тогда оцениваемая функция спектральной плотности пропорциональна величине, обратной квадрату передаточной функции прогнозирующего фильтра. Этот метод спектральной оценки, обеспечивающий повышенную разрешающую способность в том случае, когда модель применима, и отношение сигнал/шум достаточно велико, может быть также использован для формирования луча.

Задачи, решаемые с помощью метода наименьших квадратов применительно к подавлению шума, подавлению помех и спектральному анализу методом максимальной энтропии, сведены в табл. 4.4., где z и d

– случайная величина и случайный вектор в методе наименьших квадратов.

Таблица 4.4.




Содержание  Назад  Вперед