Теория и практика защиты программ


         

предназначен для упорядочения данной процедуры,


Описываемый ниже метод [ЕПУ] предназначен для упорядочения данной процедуры, а также для предотвращения возможности частичного пропуска функциональных участков тестируемых программ, слабо отраженных в спецификациях.

Сущность метода заключается в предоставлении функциональной диаграммы в виде логической сети без обратных связей, а также использовании специально введенных операций «прямого продвижения» и «обратного продвижения», часто применяемых в технической диагностике [Н]. В данном случае в логической сети, задающей функциональную диаграмму, входные переменные соответствуют командам, а выходные - следствиям. Все логические элементы сети соответствуют функциональным связям. В дальнейшем для упрощения вместо термина «логическая сеть», задающая функциональную диаграмму, будет использоваться просто «функциональная диаграмма».

Для упорядочения операций с функциональными диаграммами вводится понятие ранга функциональных связей. Выходная функциональная связь (ФС) относится к рангу r=1. К рангу (i+1) относится ФС, выходы которых являются входами ФС ранга i. Ранжирование ФС завершается после определения рангов для всех связей. Необходимо отметить, что если в функциональной диаграмме выход некоторой ФС разветвляется, то может оказаться, что ФС, уже отнесенная к некоторому рангу, в соответствии с описанным правилом должна быть отнесена к другому, большему рангу. В этом случае ФС относится к большему рангу. Максимальное значение ранга ФС называется рангом функциональной диаграммы.

Операция «прямого продвижения» позволяет определить комбинацию событий, вызываемую заданной комбинацией команд. Операция «обратного продвижения» заключается в определении множества команд, вызывающих заданную совокупность событий. При описании этих операций используется понятие «вырожденное покрытие» булевой функции, описывающей ФС.

Вырожденное покрытие (ВП) булевой функции представляет собой сжатую таблицу истинности данной функции. При этом вырожденное покрытие булевой функции f от n аргументов есть совокупность (n+1)-разрядных строк, называемых кубами, в которых первые слева n разрядов представляют набор значений аргументов, а (n+1)-й разряд - значение булевой функции на этом наборе.

Содержание  Назад  Вперед